scholarly journals Design and Analysis of Climate Model Experiments for the Efficient Estimation of Anthropogenic Signals

2003 ◽  
Vol 16 (9) ◽  
pp. 1320-1336 ◽  
2013 ◽  
Vol 9 (3) ◽  
pp. 1111-1140 ◽  
Author(s):  
M. Eby ◽  
A. J. Weaver ◽  
K. Alexander ◽  
K. Zickfeld ◽  
A. Abe-Ouchi ◽  
...  

Abstract. Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.


2019 ◽  
Author(s):  
Pepijn Bakker ◽  
Irina Rogozhina ◽  
Ute Merkel ◽  
Matthias Prange

Abstract. Climate change in Siberia is currently receiving a lot of attention as large permafrost-covered areas could provide a strong positive feedback to global warming through the release of carbon that has been sequestered there on glacial-interglacial time scales. Geological evidence and climate model experiments show that the Siberian region also played an exceptional role during glacial periods. The region that is currently known for its harsh cold climate did not experience major glaciations during the last ice age, including its severest stages around the Last Glacial Maximum (LGM). On the contrary, it is thought that glacial summer temperatures were comparable to present-day. We combine LGM experiments from the second and third phases of the Paleoclimate Modelling Intercomparison Project (PMIP2 and PMIP3) with sensitivity experiments with the Community Earth System Model (CESM). Together these climate model experiments reveal that the intermodel spread in LGM summer temperatures in Siberia is much larger than in any other region of the globe and suggest that temperatures in Siberia are highly susceptible to changes in the imposed glacial boundary conditions, the included feedbacks and processes, and to the model physics of the different components of the climate model. We find that changes in the large-scale atmospheric stationary wave pattern and associated northward heat transport drive strong local snow and vegetation feedbacks and that this combination explains the susceptibility of LGM summer temperatures in Siberia. This suggests that a small difference between two glacial periods in terms of climate, ice buildup or their respective evolution towards maximum glacial conditions, can lead to strongly divergent summer temperatures in Siberia, that are sufficiently strong to allow for the buildup of an ice sheet during some glacial periods, while during others, above-freezing summer temperatures will preclude a multi-year snow-pack from forming.


2016 ◽  
Author(s):  
J. C. Hargreaves ◽  
J. D. Annan

Abstract. The mid-PlioceneWarm Period (mPWP) is the most recent interval in which atmospheric carbon dioxide was substantially higher than in modern pre-industrial times. It is, therefore, a potentially valuable target for testing the ability of climate models to simulate climates warmer than the pre-industrial state. The recent Pliocene model inter-comparison Project (PlioMIP) presented boundary conditions for the mPWP, and a protocol for climate model experiments. Here we analyse results from the PlioMIP and, for the first time, discuss the potential for this interval to usefully constrain the equilibrium climate sensitivity. We present an estimate of 1.8–3.6 °C, but there are considerable uncertainties surrounding the analysis. We consider the extent to which these uncertainties may be lessened in the next few years.


2020 ◽  
Author(s):  
Laura Jensen ◽  
Annette Eicker ◽  
Tobias Stacke ◽  
Henryk Dobslaw

<p>Reliable predictions of terrestrial water storage (TWS) changes for the next couple of years would be extremely valuable for, e.g., agriculture and water management. In contrast to long-term projections of future climate conditions, so-called decadal predictions do not depend on prescribed CO<sub>2 </sub>scenarios but provide unconditional forecasts similar to numerical weather models. Therefore, opposed to climate projections, decadal predictions (or hindcasts, if run for the past) can directly be compared to observations. Here, we evaluate decadal hindcasts of TWS related variables from an ensemble of 5 coupled CMIP5 climate models against a TWS data set based on GRACE satellite observations.</p> <p>Since data from the CMIP5 models and GRACE is jointly available in only 9 years, we access a GRACE-like reconstruction of TWS derived from precipitation and temperature data sets (Humphrey and Gudmundsson, 2019), which expands the analysis time-frame to 41 years. The skill of the decadal hindcasts is assessed by means of anomaly correlations and root-mean-square deviations (RMSD) for the yearly global average and aggregated over different climate zones. Furthermore, we compute global maps of correlation and RMSD.</p> <p>We find that at least for the first two prediction years the decadal model experiments clearly outperform the classical climate projections, regionally even for the third year. We can thereby demonstrate that the observation type “terrestrial water storage” as available from the GRACE and GRACE-FO missions is suitable as additional data set in the validation and/or calibration of climate model experiments.</p>


2010 ◽  
Vol 34 (1) ◽  
pp. 59-74 ◽  
Author(s):  
C.J.R. Williams ◽  
D.R. Kniveton ◽  
R. Layberry

To date, a number of studies have focused on the influence of sea surface temperature (SST) on global and regional rainfall variability, with the majority of these focusing on certain ocean basins — eg, the Pacific, North Atlantic and Indian Ocean. In contrast, relatively less work has been done on the influence of the central South Atlantic, particularly in relation to rainfall over southern Africa. Previous work by the authors, using reanalysis data and general circulation model (GCM) experiments, has suggested that cold SST anomalies in the central southern Atlantic Ocean are linked to an increase in rainfall extremes across southern Africa. In this paper we present results from idealized regional climate model (RCM) experiments forced with both positive and negative SST anomalies in the southern Atlantic Ocean. These experiments reveal an unexpected response of rainfall over southern Africa. In particular, it was found that SST anomalies of opposite sign can cause similar rainfall responses in the model experiments, with isolated increases in rainfall over central southern Africa as well as a large region of drying over the Mozambique Channel. The purpose of this paper is to highlight this finding and explore explanations for the behaviour of the climate model. It is suggested that the observed changes in rainfall might result from the redistribution of energy (associated with upper-level changes to Rossby waves) or, of more concern, model error, and therefore the paper concludes that the results of idealized regional climate models forced with SST anomalies should be viewed cautiously.


Sign in / Sign up

Export Citation Format

Share Document